Sunday, September 24, 2017

Why Is LISP So Rare in Bioinformatics?

LISP is one of the oldest computer languages and perhaps one of the most influential of the early ones.  Some of the other well-known Eisenhower era languages -- Fortran, COBOL and ALGOL, have certainly left their mark, but LISP and derivatives such as Scheme or Common LISP certainly carries more cachet among "serious" programmers.  COBOL has always been a bit of an easy joke and Fortran tends to mark you as old-school; use of APL (once a language of mine) would mark you as dangerously reactionary.  ALGOL begat Pascal and Modula II and clearly had impact on the C syntax family of languages (including bioinformatics mainstays Python, Perl and Java) As I'll detail below, learning LISP has embarrassingly ended up stuck seemingly permanently on my future plans queue.  But that's also because life never forced the issue:  while LISP has certainly been used in bioinformatics (as covered in a review from 2016 ) , its mindshare in the community would seem to be very minimal.

Monday, September 18, 2017

Teaching Biology Evidence: Old or New?

I've been toying over a week with writing something based on an interesting Twitter discussion started by Dr. Laura Williams (@MicroWavesSci) of Providence College pondering the best way to approach teaching molecular genetics (really, science in general) at the undergraduate level.  In particular, Professor Williams wondered about the dangers of branding various key experiments with the names of the experimenters, such as Hershey-Chase or Meselson-Stahl.  The risk she points out is that this can devolve into an exercise in memorizing names and dates without assimilating concepts, or conversely that some students will find the names more of a hindrance than a help.  I'm going to play a bit with this, but I do emphasize that for her this is reality and for me it is a hobby (or perhaps a retirement fantasy, if I should ever actually retire).  Or in other words, for the academic this is her industry but for this industrial scientist it is academic.

Tuesday, August 29, 2017

The Curse of Spammotation Lives!

High throughput sequencing of genomes is over twenty years old, which demanded the development of automated pipelines for annotating this data.  I've worked on such pipelines since the early 1990s, implementing them as a student and at two different corporate stops.  Indeed, we were reviewing results from my pipeline versus some of the other ones out there to see what can be done better.  And unfortunately, I've found infuriating problems with RefSeq entries annotated with NCBI's bacterial genome annotation pipeline.  Now I'm usually one to sing the praises of NCBI -- they are a key resource for biological research and they make available multiple spectacular public services freely to the entire world.  But I'm afraid this time I need to vent.

Tuesday, August 15, 2017

DNA vs. the Machine

Last week's news contained a story sure to raise eyebrows.  A group of computer security researchers from the University of Washington claimed to have demonstrated that they could hijack a computer via sequencing a carefully-constructed DNA fragment.  Visions of NextSeqs rampaging through the streets immediately sprung to mind.  The paper is interesting and has some useful warnings for the bioinformatics community, but certainly the news coverage has been strong on hype and alarmism.

Saturday, August 05, 2017

Computational Biology & Math: Am I Just Faking It?

Over on Quora a common type of question is "Can I be a computational biologist if I am now an X".  Personally I take a very broad view and think just about anyone with intellectual curiosity can become any kind of scientist.  A related type of question is "how skilled do I need to be in Y to succeed in computational biology", where Y is most often programming, biology or math.  I got thinking about this and started wondering whether I am actually at all skilled in math.  Here is the results of that analysis.

Friday, July 21, 2017

A Third GridION X5 Pricing Plan

When Oxford Nanopore announced their GridION X5 instrument in March, I and others attempted to parse the difference between the two pricing plans  -- and I made a bit of a hash of it.  The X5 runs 5 MinION flowcells independently in parallel from a single desktop instrument, which also includes FPGA-based acceleration of basecalling plus a license to perform sequencing-for-hire.  Indeed, Matt Loose tweeted out an image of an "X6" and then mention of an "X7"; the X6 had a MinION plugged into the USB port and apparently the FPGA unit can keep up with seven flowcells all running simultaneously.  Now Oxford has launched an interesting third "Starter Pack" plan that offers an even lower price point for the system.

Wednesday, June 28, 2017

STAT Proves Not Resistant To Antibiotic Tropes

Tuesday's Boston Globe carried a piece originating from STAT news on an interesting natural product antibiotic, pleuromutilin.  A research group recently published a new total synthesis of this fungal terpene, an advance which promises to enable greater medicinal chemistry around the molecule.  That part is cool.  Unfortunately, when it gets to the biology of pleuromutilin the piece by Eric Boodman completely spits the bit, trotting out some horribly inaccurate tropes.